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Abstract. The dynamics of a cross-linked, entangled, network of polymer molecules is 
studied, using a gaussian chain model. The mdtion of the molecules is solved in a way which 
leads to the equations of motion of the resulting elastic medium. Thus a direct evaluation 
of the elastic constants results, by-passing difficulties arising from the use of statistical 
mechanics. The calculation also gives the fluctuation spectrum of the rubber, ie Rayleigh 
and Brillouin scattering, and evaluates the damping of elastic waves in terms of the elastic 
constants, and molecular viscosities. 

1. Introduction 

Rubber elasticity has been studied in many papers from the point of view of statistical 
mechanics. This view considers the free energy of a cross-linked network which has 
suffered a gross deformation I , ,  A z ,  1 3 .  By differentiating the free energy, particularly 
for small deformation, the elastic equations of motion are produced, but of course the 
elastic constants follow from the differentiation of the free energy in perfectly static 
conditions. If the material is incompressible, the simplest theories all agree that 

F = fin,KTCI? (lIAZA3 = l )  (1.1) 
i 

where n ,  is the number of cross links, and f i  is a constant. The value of f i ,  however, 
varies with different approaches, and whereas the value unity arises in simple models, 
the inclusion of more elaborate configurations of links appears to depress ;fi, and a very 
general approach which considers the whole network starting from an exact formal 
expression of the statistical mechanics gives 4 (Edwards 1972). Although there is still a 
gulf between these discussions and experiment, since links can be wasted, or enhanced 
by entanglements, it is an important point of principle and deserved further study. At 
the same time the fluctuations of the system, and those dynamical properties such as 
damping of elastic waves which do not follow from a knowledge of the free energy, are 
now of importance because of the new developments in light scattering. In this paper 
therefore the network is studied as a problem in dynamics, without evoking statistical 
mechanics as such, and produces the elastic constants in that they appear in the elastic 
equations of motion. The situation is analogous to that of simpler problems in condensed 
matter. One can invoke a general formula like 

e - A / ~ T  = ,-H/KT J 
and, given H, calculate A,  without reference to dynamics. Alternatively one can set up 
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the Boltzmann equation by a statistical treatment of the equation of motion, and 
although this usually means more stringent approximations being made, the final 
answer gives both transport coefficients as well as the thermodynamic variables. 

The present calculation is set up very much in the spirit of the author’s previous 
work on the statistical mechanics of networks and again yields f i  = i. The elastic 
equations of motion are (see, for example, Landau and Lifshitz 1959) 

( E 2  - c2k2 - A(E, k )  - iy(k, E ) )  uk.€ = FkE 
where 

(1.3) 
KT 
m 

c2 = --coo (c = velocity ofsound), 

1 E 2 k 2  
6 WO 

A = - - -  

is the frequency displacement, 

is the damping (= p k 2 E ) ,  

(1.4) 

and where FkE is the random external force, n,  is the number of cross links, p is the 
density of the polymer, 1 is the Kuhn effective step length of the polymer, 

v is the molecular viscosity, ie the viscosity experienced by a section of the polymer in 
the gel, not the macroscopic viscosity derived in p above, ( is the viscosity of nonlinear 
transmission of energy along the polymer (discussed in detail below), L = 1 times the 
mean number of monomers between cross links, and ml is the mass of a monomer. 

The calculation has assumed 

v . u  = 0. (1.7) 

The force FkE will be considered to be fluctuating instantaneously so that, allowing for 
the fact that FkE must leave V . U = 0 

(F,(k, E ) F f ( k ,  9 E l ) )  
= A(k)(bij - k ik j /k2 )6 (k -k1)6 (E  - E l )  (1.8) 

= A 9 $ ( k - k , ) h ( E - E 1 )  (1.9) 
say. 

Since the kinetic energy of any classical system is $KT per mode, one can now derive 

(1.10) 

4 p  J E E , ( u i ( k ,  E)uf(k,, E , ) )  d3k, d3k dE dE, = K T Q ~ ~ .  (1.11) 
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Hence 

and the fluctuation spectrum is 

- - K T ~ ~ ~ [ ( E '  - c 2 k 2  -A)2+y2] -  '6(k-k1)6(E -El )  
j Ei[(Ei - c 2 k 2  - A)2 + 7'1- ' dE2 

(1.12) 

(1.13) 

The spectrum has the usual three peaks, two at E f ck and the central peak near 
E = 0 with width c2 /p .  

These forms are of course standard in structure. The object of the present paper 
is to  relate the constants c, A, y to the density of cross links and the number density of 
the polymer, and to molecular viscosities, densities and sizes. 

2. The equations of motion 

The problem can be cast in full generality by writing the lagrangian of the system. I t  
will be assumed possible to consider the ath polymer chain represented by a variable 
r,(s,. t ) ,  where s is the arc length, with mass per unit length of m. There will be an inter- 
molecular potential V, and Lagrange multiplier PUP for the cross linkage of chain a with 
chain /3 at st, s i  respectively, and Qap for the entanglement of chains a, /3 and finally 
w,(s) for the inextensibility of the chain : 

L = i m x  P,Z(sJdsa+CPap. ( r , ( s ~ , t ) - r P ( s ~ ,  t))+zQ=p(Zap-I$)) .I a0 3P 

Only the first invariant will be considered, and it will be assumed that the presence of 
the cross links will indeed make it an invariant, ie loose ends are ignored. This lagrangian 
causes difficulty when the effect of the forces from V are considered. These have two 
effects : they make the material virtually incompressible, and they give rise to a molecular 
viscosity in the sense that if any point ru(su, t )  moves, it suffers a viscosity by brushing 
against other molecules. The incompressibility can always be put in later, but to  handle 
the viscosity it is preferable to  replace V by a rayleighian term in the velocities U which 
will put in this viscosity as an empirical term. The equations of motion with a rayleighian 
M become 

6J L dt 6s M dt +-=o 6r 6 V  

and M appropriate to the present problem will be 

(2.3) 

where ij is the average velocity of all the polymer in the position r(s, t )  and Fis  the random 
force which goes with it from the surroundings. This average will appear as a main 

~ v ( u ( s ,  1 t)-ij(s, t))2+F. U 
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concern of this paper so should be introduced in more detail. Let r0(s) be Y(S, t )  taken 
at some origin in time t = 0. Then at any time we can consider 

Y(S, t )  = u,(s)+F(s, t )+u(ro(s) ,  t ) .  (2.4) 

Here U is the average displacement in the neighbourhood of ~ ( s ,  t ) .  Strictly speaking 
one should here involve some neighbourhood function and write 

where K is chosen so that enough molecules are included in i t  for U to be considered as 
a macroscopic displacement whilst the range of K is small compared to any elastic 
wavelength to be considered. In practice however since we do  not consider any molecular 
thickness in r(s,  t ) ,  one may treat K as a 6 function and define 

where p is the mean (number or  length) density : 

p = Jf6(. - Y0(S)). ( 2 . 7 )  

I t  will be seen that U is taken labelled by the initial positions, whereas it  could be more 
convenient in large deformation theory to take U relative to present positions, ie 

P+, t )  = (Y,(S, t )  - y,o(s))~(x - YAS,  t ) )  - 3 (2.8) 

but since nonlinear effects are not studied here, definition (2 .6)  is adopted. Thus I;. is 
li, but it  will be left as t; since in the rayleighian form velocities in frictional terms are 
written as such. Another simplification is in the consideration of inextensibility. It is 
well known that, as far as the statistical distribution of distant points on a gaussian 
chain are concerned, the distribution is accurately given by the Wiener form 

s (:I 

P([ro(s)]) = . 1'exp -- r t ( s )ds  ( :Is ) 
or, using the Fourier form, taking the chains to be long 

(2.9) 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 
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This distribution implies an entropy 

S = -- w21r,(w)12 d o  
311K 1 s 

and a free energy 

(2.14) 

(2.15) 

Thus the term J w,(sJr;2(s) ds in the lagrangian can, in this simple picture, be identified 
with A ,  with w = 3~T/21, a constant. In fact one can work directly from the lagrangian 
(2.1) (as is done, for example, by Edwards and Goodyear 1972), and determine w(s) by 
the condition that r”(s) = 1 .  The mean value of w will indeed be 3~T/21,  but it will have 
fluctuations, which will give rise to friction and transport terms which are outside the 
scope of the thermodynamic variables. This analysis will not be repeated here but the 
results used. A brief account will appear in 4 4 since it  is a good analogy for the entangle- 
ment problem. Just as the forces Vgive rise to friction terms which can be incorporated 
in the rayleighian, the fluctuations in constraint multiplier w(s) give rise to a friction 
term which physically leads to the transfer of energy from one point to  another along 
the chain. This friction can only involve the motion of one part of the chain relative to 
another, so will have the form a(o)v(w),  where a(0) = 0, so that in the first approximation 
a = io2. This friction must have with it a random force in the usual way, so the lagran- 
gian and rayleighian terms for the chain alone will be 

K J w 2 1 r ( o ,  1 t)12 dw++~Jw21u(w)lz d o +  s f .  u,dw. (2.16) 

There will be an interaction between the constraint of inextensibility and that of cross 
linkage, but this is ignored in the present treatment. 

The modified rayleighian form is now 

(2.17) 
a J  .J 

I t  is perhaps worth commenting that the principle of using Lagrange multipliers works 
perfectly well for rayleighian functions provided that the constraint is written either in 
terms of coordinates, or in terms of velocities, but is not mixed. 

The equations of motion are therefore 

or 

(2.19) 
 KT 

mYa+v(i.,-B)+pk~--r~ = ~ P a 5 B ( s h - s ) + ~  Qa5V,Ia5+fa. 
1 5 5 

The force f introduced above for the representation of single chain dynamics will now 
be taken quite generally as the random forces acting at r(s, t) due both to the motion 
of the rest of the chain, and to the other chains and this incorporates F .  
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3. Solution of the equations of motion 

The equation of motion (2.19) cannot be solved exactly because it represents a virtually 
infinite coupled system of equations. What will be done is to argue what form, on 
physical grounds, the final form should take, then see how the exact form produces 
this form. The picture offered is that of a long chain held, in an approximately constant 
position relative to its surroundings, by cross links and entanglements. The initial 
position ro(s) will serve as a label for the whole configuration, so one can expect that, 
if r is written 

ra = r,,+F,+u (3.1) 

that Fa will represent a deviation from the average position taken by the chain which 
was at raO and has suffered the elastic deformation U .  Thus when a long elastic wave 
moves through the system, one expects U ,  the mean displacement, to change slowly, but 
be possibly large, whereas 7 will change quickly, but be of small amplitude. The effect 
of the cross links and entanglements will be expected therefore to produce an effective 
term in the equation of motion restricting the value of 7, eg proportional to  7 .  Thus one 
can expect an effective equation like 

m~~ - c[rg - og(rz- U - rzo))t- v(i. - ri) - @" = f, 

e, + c[02ra+ oi(r%- II -rZo)]+ V(L, - U)+ [oZi., = f, 

(3.2) 

(3.3) 

where E has been written for 31cTIl. The procedure now will be to assume that the 
effect of the links and entanglements is to produce such an equation, and to look at 
just one link (later one entanglement), work out its effect which will indeed look like 
the form chosen, and hence deduce an equation for oo. Thus one needs to solve the 
problem of two chains, entrained to be close to the yo + U  positions, cross linked to one 
another. The equations of motion are then 

(3.4) 

(3.5) 

or in Fourier transform 

D r ,  = P ,  ,S(s - si2)) + 4 , 
Dr,  = - P, ,8(s - si')) + 4, 

where 

or in Fourier transform on s 

d2 a a 
a t  a t  a t  

D = m 7 + v - + + i o 2 - + c ( w 2 + o ~ )  (3.7) 

or in Fourier transform on s and Laplace transform on t 

D = mp2 + v p  + [ 0 2 p  + c ( 0 2  +mi) .  (3.8) 

In this form, it will be possible for oo to be a function of p and o, and it will indeed 
involve p .  Also d contains the remainder 

(3.9) 4 = F + zog(r,  + U) + vpu + PI ,(p) exp(psi2)) + 1 Pij(p)  exp(ps',"). 
i j  
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Some of the symbols are in an abbreviated form, for example u in (3.2H3.9) is understood 
to mean 

S eiwsu(ro(s), t) ep‘ dt ds. (3.10) 

To avoid difficulties in counting the contribution of links, it is easiest to consider all the 
chains as one great chain cross linked to itself. It will always be assumed that there are 
a large number of links on any molecule, so this is only a matter of neglecting end effects, 
nevertheless it is easier. Equations (3.4) and (3.5) now become 

Dr = P12(6(s-s,)-6(s-s2))+$ (3.1 1) 

where 

6 = ~-P12(6(s-s,)-6(s-s2)), (3.12) 

which is solved using the Green function G : 

where 

[mp2 + VP + iw2p + E(W’ + w;)]G(w, p )  = 1 

G(s - s’, p )  = - G(w, p )  eiws dw 2.n ‘ S  
(3.13) 

(3.14) 

(3.15) 

(3.16) 

In terms of G 

4 ~ 9 ~ )  = Pl~(p)(G(s-si,p)-G(s-s,,p))+GCD (3.17) 

where CD = $ + ( r o ,  uo), ( r o ,  v o )  being the initial condition term usual in Laplace transform 
inversions. (It is left rather vague, for w i  is wi(p) but it will shortly disappear again, so 
is not dwelt upon.) Then r(sl, p )  = r(s2,  p )  gives 

(3.18) 

In fact the two points s1 and s2 will in general be remote from one another so that 
G(s, - sz, p )  is negligible, and the denominator is 2G(O, p )  where 

(3.19) 

One now has 

(3.20) 

This will be the case for each cross link, so can be regarded as a term in the expansion of 

(6(s - s,)-  6(s - ~ 2 ) ) s  [G(s, - S I ,  p )  - G(s2 - S I ,  P)]@(s’) ds’ 
Dr = 

-WO,  P) 

r = F+ (EO; + vp)u 
6(s - s.) 

mp2 + vp + qw2p + €0’ + 1 2 
i P) 

(3.21) 
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that is, 

6(s - Si) 
= average E--- 

i GiO, P) 

which, since there are nc cross links in a length L, and using (3.19) 
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(3.22) 

(3.23) 

At p = 0 one has 

(3.24) 2 - v c  
0 0  - y o  

(3.25) nC 
W O  = - 

L’ 

a result obtained earlier. However, it is worth noting that (3.23) implies that under 
dynamic conditions there are substantial changes in the equation of motion. For small 
p one gets, keeping only the terms in vp and mp2 

W O  = - 1 + 7 + - + - ,  “.i L 2“ ’ I P  2 4  mp2 2E 
(3.26) 

so the effective viscosity and mass is substantially changed. However, our primary 
concern now is to go on to the elastic equations where these violent changes do not 
appear. 

It will be seen that equation (3.21) in itself does not describe a static equilibrium 
situation unless there are special properties given to F, ie putting Y = 0 and F = 0 does 
not lead to r 0. Physically this corresponds to the fact that if a series of chains are 
cross linked, they will exert a reduced pressure on any container, and ultimately contract 
in syneresis. In this paper we are only concerned with fluctuations about, and small 
deviations from, equilibrium. What will happen upon cross linking is that the system 
will adjust itself so that a net non-vanishing force will arise which cancels the static 
(negative) pressure resulting from the cross links. We must therefore alter F to P + F  
where F is chosen to cancel any force which appears in equilibrium on the left-hand side. 
This means that whereas adopting (3.21) directly we would get 

m(i:+ii)+ v ( ~ - ~ ) + E ( P ” + u ” + ~ ~ ) + ~ ~ ” + ~ w ~ ( P - Y ) + E o ~  1 ( ro(s j ) - ro(s j ) )  = P + F  (3.27) 

F will take on a value which removes the terms in r: on the left, so that finally we have 

(3.28) 

‘ J  

nlF + mii + v(S -U) - A’’ + it‘‘ + 
Adopting (3.28) one can now solve for r 

- U) = F. 

r = J ~ ( s ,  s’ ; t ,  t ’ )  [ m & k ( t ‘ )  exp(ik. ro(s‘)) + v f i k  exp(ik . ro(s’))l dt’ ds’ 

+ ( r o ,  uo)  + J GF ds’ dt‘ (3.29) 
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so that 

u&) = - F(s, t )  exp(ik. ro(s)) ds (3.30) 
N L  “1 

satisfies 

eik.ro(s)G(ss‘, tt’)[rw;u,(t‘) exp(ij . Y,(s‘)) + vu;(t‘) exp(ij. u,(s’)] ds ds‘ dt, 
N L  

” ” 
+ exp(ik. ro) (ro ,  U,)+ J exp(ij. ro(s))F(s, t)ds. (3.31) J 

At this point the configurational average over ro(s) may be taken 

(exp(ik. r , (s)+i j .  r,(s’))) = GkJexp( -$k21s-s’ll) (3.32) 
so that 

So finally if 

fk = jexp(ij .  r,(s))F(s, t )  ds 

and 

(3.34) 

(3.35) 

(3.36) 

[(E + + bk2l) - - v p l u k ( P )  = fk(P) .  (3.37) 

I t  will be appreciated that in studying the elastic fluctuations or elastic waves, one 
always deals with small values of k and p relative to molecular distances and times, so 
the roots can be expanded to give 

(3.38) 

vlk’p mlk2p2 

+ -) = f k  
mp2 +&o,lk2 +&w,lk2p( -k - 

12 120), 

or, introducing densities, 

iWOEl vl 1 
p=- +-, [ = -  V ’  6 m  12mw, 120, 

N L m  p = -  

m o l  k2p21 c; = - A = -  
6 m  ’ 120, 

(3.40) 

(3.41) 

(3.42) ( p 2  + c$k2 + p k 2 p  + A)uk = & 
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that is, 

(2- at a t  a2  1 d 
c;V2 + p-V2 - t 7 V 2  u(r, t) = f ( r ,  t )  

d2 
(3.43) 

is the elastic equation of motion. This derivation has, however, ignored effects coming 
from the normal intermolecular forces. Apart from the cross linkages and the inexten- 
sibility of the molecules (acd the entanglements which will be considered shortly) the 
state of matter is that of a liquid. Thus there will be additional terms in the equation of 
motion which will invoke the compressibility as against shear, ie to order U, terms like 
OV(V . U ) .  The full equation of motion is then 

(s- at a t 2  a 2  1 d 
C ; V ~ + ~ - V Z - ~ - - V ~  U - e v ( v .  U) =f .  

z2 

Thus the shear fluctuations have 

(s- c;v2+p-v2-+ dt  a a 2 v ) (  V X U )  =f, a 2  

and the compressional fluctuations 

at a 2  1 a 2  a 
- - (e; + e)v2 + ,.+vz - t,v2 (v. 

( a t 2  at = f,. 

(3.44) 

(3.45) 

(3.46) 

Our results therefore only throw light on shear waves. The argument has so far con- 
sidered fluctuations about equilibrium, but clearly for slowly varying forces, an external 
f ,  will likewise generate curl U by the same equation. 

The theory must now be generalized to include the entanglements of the molecules. 

4. Entanglements 

Since the simplest gels have no permanent cross links, one must develop the theory of 
entanglements of the chains. We will not be concerned with creep in the present work, 
so consider the chains effectively infinite in length. The fact that they cannot pass through 
one another is somewhat like a cross link in effect, although the kind of highly knotted 
topology between a pair of chains, which is obviously like a cross link, will be rather 
infrequent. It is the simple property that chains sweep out a constant angle around one 
another which provides the principal source of entropy for the system. It is important 
to realize that the average effect of entanglements is weaker than one might suppose at 
first sight, because for example in figure 1 whereas chains a, c exert a pressure in one 
sense on chain e, chains b, d exert a pressure in the opposite sense. 

0 

Figure 1. 
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The net effect is due to fluctuations, and it will be found that it contributes to  elastic 
constants like p”’ rather than p which might have been guessed by counting contacts. 
This offers a justification for treating the effects as weak and using the much simpler 
mathematical techniques which. are then permissible. Although some exact results are 
available for pairs of chains (Edwards 1967, 1968) the mathematics seems too difficult 
to apply statistically, and is anyway unnecessary. 

To  see the method, a brief account will be given of the treatment of the inextensibility 
of the chain, and then the entanglement theory developed by analogy. The probability 
distribution for a chain r(s) is 

JV exp( - ~ ~ r ” ( s )  ds),  

where JV is an uninteresting normalization, from which the free energy will be 

A = -~ r”(s) ds 3KT 21 i 

(4.1) 

(4.2) 

and the force exerted (3rcT/l)r”(s). Now one should be able to  derive this without 
invoking thermodynamics, directly from the equations of motion. Following Edwards 
and Goodyear (1972), the rayleighian is then 

(4.3) 

where q is the Lagrange multiplier, and the equation of motion 

-mi: + vL + (qr’)’ = F. (4.4) 

Now 

r” = 1, so that r’.  r” = 0 r’. r’ = 0 

y”’ + y‘ . y“ = 0 

i .12 + ! I .  r‘ = 0. 
(4.5) 

Thus 

- ~’ + v i ’  + qr”’ + 2q”r’ q’r” = F’ (4.6) 

which when multiplied by r’ gives, using the relations above, 

(4.7) 

This can be solved for q using the two free end boundary conditions, but only the mean 
value is of interest to us, so that a first approximation is got by directly averaging (4.7), 
giving 

mi.’’ + q” - rlr2q = F‘. y ‘ ,  

m ( i ” )  q‘- 
( r ” ’ )  ’ 

(4.8) 

At this point one can see that both numerator and denominator are badly behaved if 
evaluated using the continuous probability distribution for r (s ) ,  and the Maxwell 
distribution for v(s) ,  but will be well behaved if one returns to rods of length 1. This is 
to  be expected for although the Wiener distribution is written in a local form, its validity is 
restricted to large distances compared to I ,  and the rough and ready rule is that it can 
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be used provided nothing goes wrong; if something goes wrong one reverts to the full 
local detail. Clearly upon averaging 

q = constant KT (4.9) 

Entanglements can be treated similarly. The condition that two chains a, fl sweep 
and the constant will come out to 3/21 when the calculation is done accurately. 

out a constant angle around one another is expressed by I , ,  = constant, ie 

(4.10) 

(4.11) 

(4.12) 

As with cross links, consider two chains to start with, assuming the totality will appear 
as an U; term as before. Then chain a will have an equation of motion 

(4.13) 

and chain f l :  

(4.14) WIPfi+vLp+Qorp--- K, = Fp, 
6r,(s, t )  

where Q,, is the Lagrange multiplier. The analogues of (4.5) are 1 = 0, ie 

I = 0, ie 

(4.15) 

(4.16) 

I f  the equations of motion are multiplied by 61/6r and integrated, the friction terms 
vanish from (4.13) and (4.14), when the equations are added and 

As before one may replace rr by ii and take the average, replacing Q by a constant value 
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Now returning to the equation of motion, one can argue that in a full entangled 
system r = 7 + r,, + u(ro) will have 7 rather small, so that one can expand 

The equation of motion now becomes 

(4.19) 

(4.20) 

and averages can replace the complicated entanglement integrals and the effects of the 
many chains can be included, to leave 

R # ~ + v P ~ + c o : F ~  = F (4.21) 
where 

d21 d21 61 61 ( I J ~ ~ G  ds, ds2 fa ds, ds,) (( I - 6r - - 6r ds, ds, + 1% 6r 2 6r ds, ds2)) - 

(4.22) 

This expression has the dimension of a velocity squared, and contains terms from each 
chain averaged over the volume of the system. It must follow then that 

CO: = ptcTC (4.23) 

where p is the density of chains and C a constant. Now I in the average is taken inde- 
pendent of 7, ie we are working at small i.; moreover the transformation ro + ro + u(ro) 
is a continuous, indeed differentiable, distortion of the body and as such will not alter I ;  
I is invariant under continuous deformations of the embedding three-dimensional space. 
Therefore U can be simply omitted from the calculation and the averages taken about 
the initial configurations. As with the inextensibility condition, the integrals are badly 
behaved, but their value does not involve anything but the individual specification of 
the chains, ie just I for freely-hinged rods. Hence the assertion that 

CO: = ~ K T C .  (4.24) 

One can note that a direct thermodynamic argument can also be applied. The 
probability distribution function must contain 

(4.25) 

where 6, is the Kronecker delta, not the Dirac delta. This means that one can parametrize 
6 K  by 

(4.26) 

But I is rather like the hamiltonian in the statistical mechanics of a microcanonical 
ensemble. The constraint of the 6, is a gentle one and if we think of 

e ’”dAdi . - r  1 (I+iAx--+ %2X2 . . .  
211 - n  2 (4.27) 

N 1-&2x2+ ... (4.28) 

N exp( -$n’x‘). (4.29) 
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The effect of n6,(l- I o )  is like 

= exp( - ; p  F 2 ( s )  ds) . 

(4.30) 

(4.31) 

(4.32) 

Just as before L”/dr2 appeared from the dynamics to play the part of 3 ~ T / l ,  one finds 
iz2((6Z/6r)2) being represented by the unpleasant integrals of (4.22). By either method 
however, the difficulties are buried in the constant C and one may now build in the work 
of this section into the earlier results. The effect is simply to  add a term to  the definition 
of 0 0 :  

%WO 
L 

0; = -+cp (4.33) 

a result previously derived by purely thermodynamic arguments (Edwards 1972). There 
are two obvious limits 

oo = n,/L 
WO = ( C p y  

for predominant cross linkages 

for predominant entanglements. 

5. Conclusion 

This paper has derived a statistical dynamics of networks, based on the concept of a 
region of freedom of movement of the chains of the network. It is possible to derive 
this region of freedom in terms of the density of cross links and the number density of 
the chains, which produce effective cross links due to entanglements. With this concept 
it is possible to derive the velocity of sound, frequency shift and damping, of shear waves. 
The paper has not given any account of the hydrodynamic interaction of a gel network 
with its surroundings, employing rather a simple viscosity coefficient, in the Rouse 
manner. Nor has it studied in detail the high frequency compliance which involves the 
local correlation functions as well as the long wave elastic fluctuations. It is hoped to 
return to  both of these subjects in later papers. 
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